Validation evaluates the consistency of the
predictive simulation outcome with the system of interest,
consistent with its intended application.
adapted from Schlesinger (1979)
import quantities as pq
from networkunit import models, tests, scores
## Compare inter-spike-intervals of Poisson activity with different rates
# Define models
model_A = models.stochastic_activity('model A', rate=5*pq.Hz)
model_B = models.stochastic_activity('model B', rate=15*pq.Hz)
model_C = models.stochastic_activity('model C', rate=45*pq.Hz)
# Define test
class spikeinterval_test(tests.TestM2M, tests.isi_variation_test):
score_type = scores.ks_distance # <- define score statistic
params = {'variation_measure': 'isi'} # <- define parameter settings
test = spikeinterval_test()
# Run validation test
score = test.judge([model_A, model_B, model_C])
score.score
>>> model A model B model C
>>> model A 0.000000 0.376101 0.669596
>>> model B 0.376101 0.000000 0.385336
>>> model C 0.669596 0.385336 0.000000
Thanks to all collaborators
Related posters
Further reading