Validation evaluates the consistency of the
predictive simulation outcome with the system of interest,
consistent with its intended application.
adapted from Schlesinger (1979)
import quantities as pq from networkunit import models, tests, scores ## Compare inter-spike-intervals of Poisson activity with different rates # Define models model_A = models.stochastic_activity('model A', rate=5*pq.Hz) model_B = models.stochastic_activity('model B', rate=15*pq.Hz) model_C = models.stochastic_activity('model C', rate=45*pq.Hz) # Define test class spikeinterval_test(tests.TestM2M, tests.isi_variation_test): score_type = scores.ks_distance # <- define score statistic params = {'variation_measure': 'isi'} # <- define parameter settings test = spikeinterval_test() # Run validation test score = test.judge([model_A, model_B, model_C]) score.score >>> model A model B model C >>> model A 0.000000 0.376101 0.669596 >>> model B 0.376101 0.000000 0.385336 >>> model C 0.669596 0.385336 0.000000
Thanks to all collaborators
Related posters
Further reading