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Introduction

Connectivity structure is essential to understanding the

activity and function of neuronal networks in the central

nervous system. While the long-range connectivity in

the macaque cortex has been thoroughly studied [1, 2],

relatively little is known about the microscale connectiv-

ity within cortical areas and across cortical layers—"the

microconnectome"— outside of the early sensory and

primary motor areas. It has been hypothesized that the

microconnectome follows a canonical motif across the

cortex, but quantitative measurements to date are still

insufficient to fully verify this claim. Here, we present

a novel method to estimate the microconnectome from

neuronal spiking activity across the visuo-parieto-frontal

gradient.

Summary statistics of spiking data

We measured the resting-state activity from several cortical areas (V1, V4, M1, PMd, dlPFC) in macaque monkeys (Macaca

mulatta) [3-6]. From the spike-sorted activity, we calculated several single-neuron summary statistics for 10 s data slices,

quantifying the firing rates, irregularity, and correlations. The analysis was implemented using the NetworkUnit framework

to ensure reproducibility and interoperability [7].

Overview of experimental data and summary statistics. A) Schematic representation of the data recording location [3-6]. B) Sample

recordings of simultaneous spike trains. C) Summary statistics of the single-unit spike trains. Each point in the scatter plot corresponds to

a 10 s spike train of a single neuron. CC refers to the cross-correlations of the neuron with all other neurons in the recording. D) Variance

explained by the first four principal components (PC) of the multi-dimensional summary statistics.

Distinct summary statistics in each area
To elucidate whether the resting-state activity is a unique signature of each cortical area, we test the differences of the

multi-dimensional summary statistics across areas and layers. Indeed, a multivariate analysis of variance (MANOVA)

reveals significant differences between cortical areas within and across experiments.

Pairwise statistical testing. A-D) Univariate (ANOVA) and E) multivariate (MANOVA) pairwise test results over the summary statistics.

We test the null hypothesis that two or more groups have the same population mean. In all panels, lower triangular entries show the

logarithm of the p-values and the upper triangular part shows the F-statistic. Significance level (α = 0.05) corrected for multiple testing

(Bonferroni).

Wasserstein distance: robust similarity metric

The Wasserstein distance (WS) is ideal for our use case because it can be applied to data sets with different sample sizes,

is symmetric and does not require any assumptions of a certain distribution.

A, C) Wasserstein distance (WS) between all experimental data summary statistics for tslice = 10 s and tslice = 30 s, using the same color

scale for both panels. B) WS as a function of tslice. Each line represents one pair of recordings, colors are arbitrary.

Synthetic data and parameter scan

We generated synthetic data by simulating spike trains with a random balanced spiking neuron network [10]. We calculated

the summary statistics of the synthetic data and performed a parameter scan. We calculated the WS distance with respect

to our target parameter set and show that our cost function is smooth in parameter space.

A) Summary statistics of spiking neuron model. B) Parameter scan. WS distance with respect to the target simulation.

Estimating connectivity from synthetic data
We used the summary statistics from the synthetic data as a target for our proof of concept. We could recover the

connectivity parameters used to generate the synthetic data from the summary statistics alone (quantified via the

Wasserstein distance) using the following heuristic:

1: population← generate random individuals

2: for generation ≤ N do
3: population.fitness← evaluate(population)
4: survivors← select(all individuals)
5: mutants← mutate(survivors)
6: newcomers← generate random individuals
7: population← newcomers and mutants

8: end for

Proof of concept of the optimization algorithm using synthetic data from a random balanced spiking neuron network. A) Variability of the

Wasserstein distance (WS) in the target simulation when recording only a certain fraction of the neurons in the model. B) Progress of the

optimization algorithm, showing lowest WS overall and within each generation. C) Pairplot of estimated parameter sets.

Discussion
The aim of this study was to estimate connectivity parameters of the cortical microcircuit from activity data alone. We

presented a novel method for model-to-data comparison, using a multi-dimensional single-neuron statistic cloud. We

showed that the multi-dimensional summary statistics variy across the cortex, and are robust to data duration lengths.

Additionally, we presented a novel optimization approach that minimizes the distance between some specific target spiking

activity and some spiking neural network model. Finally, we provided a proof of concept of our optimization method using

synthetic data. Future work will see this approach extended to larger more biologically realistic models, which we will use

to estimate local cortical connectivity parameters.
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