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Introduction

elephant
ELECTROPHYSIOLOGY ANALYSIS TOOLKIT

The need for reproducible research is a topic
of intense discussion in the neurosciences. In
the context of data analysis, we develop the
Electrophysiology Analysis Toolkit (Elephant,
[1]) as a central resource to provide tested and
validated reference implementations of common

analysis methods for activity data. However, reproducibility also requires
such tools to be embedded in collaborative, holistic workflows [2] pro-
viding clear, traceable analysis steps from data acquisition to publication.

Here, we showcase how Elephant is integrated into an analysis work-
flow running on the the Collaboratory, reproducing work in [3]. The
workflow consists of complementary open-source tools and services [4] for:
metadata management (odML and odMLtables, [5,6,7]), data query (HBP
Knowledgegraph, [8]), data versioning (gin, [9]), data storage (nix, [10]),
data handling (Neo, [11]). Finally, we outline how these building blocks,
combined with generic tools, can be assembled into formalized workflows
to support reproducible research, e.g. the validation of network simulations
with NetworkUnit.

Multi-scale analysis workflow on the Collaboratory

The Collaboratory infrastructure of the Human Brain Project hosts the overall workflow of the project, required
tools, central data management, data search, HPC access, and the ability for interactive work.
The implementation employs a variety of existing tools to describe the workflow in a generalized and reusable form.
It is structured as a hierarchical arrangement of modular elements. The top level is a pipeline, which is composed of
sequential stages. Each stage is a collection of modular analysis/processing blocks.

▶The execution instructions of blocks and stages are defined with Snakemake.
▶Parameter settings and the selection of blocks is separated in config files.

▶The interfaces between stages/blocks are standardized (Neo, pandas).
▶The blocks use standard implementations of algorithms (e.g from Elephant).
▶ Fairgraph enables fetching data and storing (intermediate) analysis results as
well as analysis activity (provenance) with the KnowledgeGraph.

→ reproducible & comparable analysis/validation/benchmarking

Analysis using Elephant
Elephant is a community-
centered, open-source soft-
ware package that provides
components for the analysis
of multi-scale electrophysio-
logical data (e.g., spike trains,
local field potentials) from ex-
periments and neuronal simu-
lations, focusing on:

▶methods for the analysis of
parallel recordings

▶ correlative features of brain
dynamics

▶ bridging different scales of
observation
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Summary

The presented analysis workflow. . .
▶ . . . combines several public, community-centered software tools to
achieve a reproducible analysis.

▶ . . . is re-usable and suitable for collaborative work between laboratories
by use of the HBP Collaboratory.

▶ . . . provides a comprehensible data flow across scales independent of
the data format using the Neo library.

▶ . . . leads the way towards the implementation of future analysis work-
flows based on the Elephant library.

Find further resouces:

http://python-elephant.org
https://github.com/NeuralEnsemble/
elephant

Validation with NetworkUnit
▶Validation is the process of establishing confidence in a model by quantitatively testing whether its prediction accuracy
is within an acceptable agreement to its system of interest.

▶Network-level validation evaluates the model simulation on the level of the network activity as opposed to the
complementary approach of validating on a single-cell level.

▶Model-to-model validation compares models (or their implementations) for consistency, cross-validation, simulator
evaluation, or quantification of model developments. [12]

The Python module NetworkUnit [13] is based on SciUnit
[14] and Elephant, and provides a formalized framework
along with a battery of standardized tests for network-level
validation.

▶Models are matched to appropriate tests via ’capabilities’.

▶New tests can be easily derived from a range of base tests.

▶Tests can be adapted to also compare multiple models.

▶Test scores are annotated with their provenance.

Standardization → Reproducibilty

Modularization → Versatility

Formalization → Understandability

ProducesProperty

calc_property()

Capability

XYTest
generate_prediction(model):

  prop = model.calc_property()

  return calc_xy(prop, params)
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judge(model):

   prediction = generate_prediction(model)

   compute_score(observation,prediction)
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