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Introduction

The primate brain is a complex system and many aspects of the
relation between its cortical structure and network activity remain to
be understood. Bottom-up simulation approaches have been able to
partially describe the dynamics of the visual cortex, relying on anatomical
parameters [1]. Despite extensive knowledge of cortical architecture,
quantitative studies have focused on few areas of interest and the
properties of large portions of cortex remain unknown. We aim to over-
come the limitations of available structural parameters by constraining a
cortical microcircuit model [2] with experimental electrophysiological data. Microcircuit model [2]

Electrophysiological recordings

M1/PMd recordings V4/dlPFC recordings

Acute simultaneous recordings of macaque primary motor (M1) and

premotor (PMd) cortices (n=1 subject, n=18 sessions) with lam-

inar probes (Plexon and Alpha Omega, 24 contacts, 100 and 200

µm pitch) during dedicated resting state sessions [3]. Video-based

behavioral segmentation: RS (eyes open, no movement), RSS (eyes

closed), M (movement). Spike sorting identified 5-13 clean single

units per probe and session. Two sample behavioral segmentations

shown.

Acute simultaneous recordings of macaque visual area V4 and dor-

solateral prefrontal (dlPFC) cortices (n=1 subject, n=58 sessions)

from superficial layers (L2/3) during resting state with up to 4

Plexon electrodes. Eye pupil size signal based segmentation: RS

(eyes open), RSS (eyes closed). Spike sorting identified 4-10 clean

single units per area and session. Two sample behavioral segmen-

tations shown.

Anatomical parameters

Number of neurons under 1 mm
2 of cortical surface and connection probability

between any two neurons in each layer.

Prior knowledge of the anatomical
structure of the cortical areas is
incorporated at the initialization of
the model for each area. We rely
on previously calculated estimates
of the V4 parameters [4]. Motor
cortex (M1, PMd) neuron counts
[5, 6] and connectivities [7] were
obtained from the available litera-
ture. These anatomical estimates
rely on data from mice, rats,
cats and macaques; measured in
different settings.

Spiking data features

Spike trains were sliced into 10 second long slices and several statistics were calculated for each
unit. We use a multi-dimensional cloud of these metrics to represent the activity in one area. The
metrics are:
•Average firing rate (FR)

• Local variability of the inter-spike intervals (LV)

•Average cross-correlation with units in the same layer

•Decay constant of the autocorrelation function (Timescale)

We quantify the differences between these feature clouds with the Wasserstein distance (i.e. Earth
mover’s distance). All statistical tests are implemented in the NetworkUnit [8] validation library,
allowing to flexibly construct a reproducible calibration workflow.
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Overview of spiking data features. A Spike trains simultaneously recorded in each layer. B Distribution of the first two principal

components of the features for each area and layer. C Pair plot of all features from experimental data and density distribution of each

feature. D Layer-wise Wasserstein distance between feature clouds of the different cortical areas.

Evolutionary optimization

We have chosen to estimate the connectivity parameters of the cortical microcircuits using a
gradient-free Evolutionary Algorithm (EA). We search for a variety of optimal parameter settings,
based on findings that disparate parameters can lead to similar dynamics [9]. The cost function
(i.e. fitness) is given by the Wasserstein distance between the simulated and experimental data
features. We use the learning to learn (L2L) optimization framework [10] on high-performance
computers [11] to compute the cortical parameter estimates.

Conceptualization of the optimization algorithm used for the estimation of anatomical parameter sets from electrophysiological recordings.

Outlook

This is an ongoing project. Future work will include: Exploration of further data features (e.g. spectral power); extensive optimization runs to estimate parameter sets; comparison of models with white or
colored noise input; assessment of obtained parameters, similarities and differences within and across areas. The area-specific microcircuit models developed in the present project will be incorporated into a
multi-area model of all vision- and motor-related areas of macaque cortex [1, 4] to enable studying visuomotor interactions.
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