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The integrative loop describes an iter-
ative process of comparison and valida-
tion of experimental and simulated data.
Here we use it to derive a mesocircuit model
of the macaque (pre)motor cortex validated in
terms of statistical neuronal activity as outlined
in Denker and Grün (2016). The planned col-
laboratory based on this workflow will have the
role of providing an integrated solution for re-
producibility.
Senk et al. (2017) have implemented a similar
workflow (see collab #507) to compare sim-
ulation results of NEST and SpiNNaker for the
same cortical model (Potjans and Diesmann,
2014), which is continued in T9.1.5 (SGA1) Model simplification and validation. The
comparison of experimental and modeled data is currently developed within the collaboratory using
the validation framework (T6.4.4 [SGA1]). Simulation runs will be realized with UNICORE
(T7.5.6 [SGA1]).
Within T4.5.1 (SGA2) Comparing activity dynamics of models and living brains, we
outline here a workflow for electrophysiological research and show how existing tools are integrated,
e.g. T4.1.3 (SGA2) Mean-field and population models, T4.2.1 (SGA1) Simplified net-
work models of different cortical areas, T5.7.1 (SGA2) Elephant, and T7.5.5 (SGA1)
Simulator NEST as a Service.

4× 4 mm2 Mesocircuit Model

The NEST spiking point-neuron model of cortical microcircuit by Potjans & Diesmann (2014)
(1 mm2 column, 8 populations, 4 layers) is extended to with distance-dependent connectivity and
to be re-parameterized to (pre)motor cortex in order to reproduce experimental results.

Network description

•∼1.2 million leaky integrate-and-fire (LIF)
neurons in 4 layers with excitatory (E) and
inhibitory (I) populations

•∼6 billion static current-based synapses

• External input with Poisson statistics

•Uniform neuron distribution with periodic
boundary conditions (torus connectivity)

•Connection probabilities derived from experi-
mental data [2]

•Distance-dependent connectivity with Gaus-
sian profile (σE=0.5 mm, σI=0.2 mm) with
maximum distance 2 mm

•Delay offset: 0.3 ms, axonal propagation
speed 0.3 mm/ms

Mean-Field Theoretic Approach

To constrain the parameter space of the model, we make use of a mean-field theory by
Dahmen et al. (2016) that allows us to infer constraints on the statistics of effective connections
from the experimentally observed first and second moment of the covariance distribution. Effective
connections hereby measure the sensitivity of the postsynaptic firing to a spike of the presynaptic
neuron. The figure shows how low mean and large standard deviation (blue dashed horizontal

lines) of experimentally observed
cross-covariances (blue) are explained
by a model network (red) with high
variability of connections (σ2

= 0.8).
The spectral radius of the effective
connectivity is predominantly deter-
mined by the width of the distribu-
tion of cross-covariances. The latter
can thus be used to infer the opera-
tional regime of the network, i.e. the
distance to criticality.

Analysis of Experimental Data

Data
Data are obtained from a Utah array (100
electrodes) in the (pre)motor cortex of
macaque in resting state. Spiking activity
and local field potentials were measured for
15 min and video recordings were used to
separate periods of rest and movement.
Spikes were sorted offline by our partner in
Marseille [1] resulting in 147 single units.

Preprocessing
To identify putative excitatory and inhibitory
neurons we classify waveforms into broad (bs)
and narrow spiking (ns). For a given threshold
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Analysis of experimental data from HBP collab #2493 [8].

(350 ms) the percentage consistency of each unit is calculated. Forcing at least 60% consistency
we find 95 putative excitatory (bs) and 37 putative inhibitory (ns) units.

Estimation of Covariances and Eigenvalues
Cross-covariances are estimated from binned spike trains x and y with a binsize of 150 ms
(after which the autocorrelation function has decayed to approximately zero) according to
cxy = 〈xy〉 − 〈x〉 〈y〉. The p.d.f. of cross-covariances are computed for cell-type specific
connections (bs-bs, ns-ns) as shown below. As expected from mean-field theory [Deutz et

al., in prep.] inhibitory neurons lead to broader distributions. A singular value decomposi-
tion of the covariance matrix indicates that the dimensionality is reduced during movement [5].

Validation

We validate the model with respect to experimental observation using the HBP validation frame-
work (see other poster on this topic). Here validation means to which degree a model accurately

describes reality. As the model is updated constantly, validation is an iterative process to increase
confidence in the model. We make use of methods derived in T9.1.5. [6] for testing simulations
on conventional computers against simulations on neuromorphic hardware (i.e. validation of the
SpiNNaker w.r.t. NEST simulator). Among others, we test equality of distributions using the
Kolmogorov-Smirnov distance (see below) and equality of variances using Levene score.

Validation Workflow

ProducesSpikeTrains

produce_spiketrains()

Capability

covariance_test

generate_prediction(model):
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  cov = calc_covariances(sts,params)

Test

KS_test_score

Score

RS_data

re
q
u
ir

e
s

in
h
e
rits

judge(model):

   prediction = generate_prediction(model)

   compute_score(observation,prediction)

cortex_model
Model

Params KS_score

Score Class

com
poses

initializes v
a
lid

a
te

co
m

po
se

s

RS_covariance_test

Test Instance

c
re

a
te

Structure of a typical test design in the validation framework. It

shows the relation of the capability, test, score, and model classes in

a validation test.

∼$ RS cov test = covar test exc(RS data)

∼$ NEST sim = cortex model()

∼$ RS cov test.judge(NEST sim)
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DKS = 0.295
p = 2.03e­223

Resting State
Simulation

Comparison of covariance distributions of excitatory connections ob-

tained from experimental (blue, at rest) and simulated (orange, layer

6 microcircuit) results. Small p-value indicates that there is still a sig-

nificant difference (DKS : maximal vertical distance between c.d.f.).

Outlook

•Additionally constrain parameter space based on firing rates and coefficient of variation

• Incorporate UNICORE-based computation of mesocircuit on JUELICH clusters

•Add experimental data in Neural Activity Resource NAR (T5.7.2 [SGA2])

•Generate algorithm to automatically update model parameters based on the quantitative results
obtained from statistical comparisons
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