Poster 2

Validation Methods for Neural Network Simulations Robin Gutzen¹, Sonja Grün^{1,2}*, Michael Denker¹*

¹ Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6) and JARA-Brain Institute I (INM-10), Jülich Research Centre, Jülich, Germany ² Theoretical Systems Neurobiology, RWTH Aachen University, Aachen, Germany

Contact: r.gutzen@fz-juelich.de

*equal contribution

Motivation

- ► How can we asses if the outcomes of two simulation runs of a network model are the same for different neuron- or synapse-models, simulators, temporal resolutions, random seeds, parameters, or when performed on different computer architectures? [1]
- ► This comparison is not trivial, because the exact spike times are not necessarily identical between the two outcomes.
- ► Here, we investigate two approaches to use neural correlations as a generic feature to describe the sim-

	2	
Run a simulation the microcirc model on JUQU using NEST	on of uit JEEN T model o	imulation of nicrocircuit n SpiNNaker
nest:: simulated()		Spi <mark>NNake</mark> r
<u>U</u> NIC@RE	Transfer results to the Collab storage	
	Compare results using Elephant : interactive (Collab) / task-based (JURECA)	
5		
	Interactive visualization of	

Conclusion

	Stochastic Data	Simulation Data
Two Sample Testing	 The tests correctly conclude the similarity of correlation coefficients. Test results vary notably for different runs due to stochasticity. 	 ▶ Hypothesis of similarity is rejected for all tests and simulation versions. ▶ Improvement of v1 → v2 can be quantified by all three measures.
Eigenvalue Decomposition	 The generated correlated groups of neurons can be correctly identified. The data sets can be quantitatively and visually distinguished. 	 No salient correlation features can be identified by visual inspection. Future work: Quantitative charac- terization of the correlation struc- ture

ilarity on the level of the coordination of activity.

Approach 1: Compare distributions of correlation coefficients by applying two-sample tests. Are the pairwise correlation coefficients sampled from the same underlying probability distribution?

Approach 2: Describe the correlation structure by means of an eigenvalue decomposition. Is it possible to detect a correlation structure beyond pairwise relations?

<u>Data</u>: Validation methods are applied to two different scenarios in parallel: Stochastically generated data and results of a network simulation

Data Sets

Stochastic Data HOC vs. PWC

Q: Can different correlation structures be distinguished?

Simulation Data NEST vs. SpiNNaker v1 vs. SpiNNaker v2

Q: Are the approaches applicable to a real world validation scenario?

An example validation workflow between simulation runs on the NEST & SpiNNaker simulators implemented in the HBP collaboratory [1]

Two Sample Testing

Simulation Data **Stochastic Data** Pearson pairwise correlation coefficient: $\rho(s_i, s_j)$, s_i : binary spike train (2 ms binning)

Kullback-Leibler Divergence

Entropy-based measure of the difference between two

► Outlook: Development of a validation methods toolbox and integration into the validation framework of the Human Brain Project [8]

Eigenvalue Decomposition

Simulation Data **Stochastic Data** Performing Principle Component Analysis on the correlation matrices $\mathbf{C}: (i, j) \mapsto \rho(s_i, s_j)$

 $\mathbf{C} \cdot \mathbf{v_i} = \lambda_i \mathbf{v_i}$

Eigenvalue Distribution

► The *Marchenko-Pastur distribution* describes the distribution of eigenvalues for an infinitely large correlation matrix.

SpiNNaker v1 --PWC SpiNNaker v2 ► Generate stochastic activity \blacktriangleright Simulation: 1 mm³ cortical data for 100 neurons ► HOC: Higher order correlations of order 8 and 5 via compound Poisson processes + homogeneous Poisson processes ► A compound Poisson process [2][3] samples synchronous events from an amplitude distribution: 0 1 2 3 4 5 6 7 8 synchrony order Pairwise correlations ► PWC: via compound Poisson processes of order 2 + homogeneous Poisson processes. Constructed such that the expected distribution of correlation coefficients is identi-

- microcircuit model (80k neurons) [5] ► Analyze 100 inh. neurons subsampled from Layer 4 ► NEST: Simulated by a conventional simulator (NEST [4]) on an HPC ► SpiNNaker v1: Simulated on a neuromorphic hardware (SpiNNaker [6])
- ► SpiNNaker v2: Simulated again on SpiNNaker after an implementation bug is fixed (see [1])

-0.08

-0.04

-0.08

- distributions
- Interpretation: Information lost when substituting one distribution for the other
- ▶ Distributions are similar. D_{KL} is relatively low.
 - ► Divergence was reduced by $\sim 90\%$ for v1 \rightarrow v2.

Kolmogorov-Smirnov Distance

$D_{\rm KS} = \sup |\hat{P}(x) - \hat{Q}(x)|$

- Distance measure: Maximal vertical difference between the cumulative distributions
- Significant difference is assumed when p < 0.05.
- ▶ The small D_{KS} can't reject ▶ The D_{KS} was reduced by $\sim 70\%$. Hypothesis of the hypothesis that the underlying distributions are similarity is still rejected. identical.

Mann-Whitney-U Test

- ► The *Tracy-Widom bound* accounts for the variance of the
- bounds for a finitely sized random matrix [7].
- Significantly large eigenvalues indicate dominant correlations in the network.

► The vector loads of eigenvectors of significant eigenvalues identify the corresponding groups of correlated neurons.

References

- [1] Senk, J. et al. (2017). A Collaborative Simulation-Analysis Workflow for Computational Neuroscience Using HPC. In High-Performance Scientific Computing, E. Di Napoli, M.-A. Hermanns, H. Iliev, A. Lintermann, and A. Peyser, eds. (Cham: Springer International Publishing), pp. 243–256.
- Staude, Benjamin, Stefan Rotter, and Sonja Grün. "CuBIC: cumulant based inference of higher-order correlations in massively parallel spike trains." Journal of computational neuroscience 29.1 (2010): 327-350. [3] Staude, Benjamin, and Stefan Rotter. "Higher-order correlations in non-stationary parallel spike trains:

- $\blacktriangleright U \in [0, \frac{n_1 n_2}{2}]$ is a rank measure of sameness.
- Significant difference is assumed when p < 0.05.
- Rank sums are similar. Hypothesis of similarity is not rejected.
- Mismatch in the rank density is only barely detected in the rank sum statistic.

Test Confidence

▶ The test results may vary notably for a different parameter choice and due to the stochasticity of neurons.

-0.04

-0.08

- ► With the information about the eigenvalues and eigenvectors the neurons can be reordered to reveal their correlation structure.
- ► Next step: Find measure for

the quantitative agreement of the correlation structure

Neuroinformatics Conference Abstract: Neuroinformatics 2016. statistical modeling and inference." BMC Neuroscience 10.1 (2009): P108. [7] Peyrache, A., Benchenane, K., Khamassi, M., Wiener, S. I. & Battaglia, F. P. (2010) Principal component [4] http://www.nest-initiative.org/ analysis of ensemble recordings reveals cell assemblies at high temporal resolution. Journal of computational Potjans, Tobias C., Markus Diesmann "The cell-type specific cortical microcircuit: relating structure and neuroscience 29, 309-325. activity in a full-scale spiking network model." Cerebral cortex 24.3 (2012): 785-806 [6] Van Albada, Sacha J., et al. "Full-scale simulation of a cortical microcircuit on SpiNNaker." Frontiers in ^[8] NEST - SpiNNaker Workflow: collab.humanbrainproject.eu/#/collab/507/ NEST - SpiNNaker Validation: collab.humanbrainproject.eu/#/collab/2366/

Acknowledgments: Helmholtz Portfolio Theme Supercomputing and Modeling for the Human Brain (SMHB), European Union Horizon 2020 research and innovation programme under grant agreement No. 720270 (Human Brain Project, HBP)