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Motivation

▲

How can we asses if the outcomes of two simulation
runs of a network model are the same for differ-
ent neuron- or synapse-models, simulators, tempo-
ral resolutions, random seeds, parameters, or when

performed on different computer architectures? [1]

▲

This comparison is not trivial, because the exact
spike times are not necessarily identical between the
two outcomes.

▲

Here, we investigate two approaches to use neural
correlations as a generic feature to describe the sim-
ilarity on the level of the coordination of activity.

Approach 1: Compare distributions of correlation co-
efficients by applying two-sample tests.
Are the pairwise correlation coefficients sampled from

the same underlying probability distribution?

Approach 2: Describe the correlation structure by
means of an eigenvalue decomposition.
Is it possible to detect a correlation structure beyond

pairwise relations?

Data: Validation methods are applied to two different
scenarios in parallel: Stochastically generated data and
results of a network simulation

An example validation workflow between simulation runs on

the NEST & SpiNNaker simulators implemented in the HBP

collaboratory [1]

Conclusion

Stochastic Data Simulation Data

Two Sample

Testing

▲

The tests correctly conclude the
similarity of correlation coefficients.

▲

Test results vary notably for differ-
ent runs due to stochasticity.

▲

Hypothesis of similarity is rejected
for all tests and simulation versions.

▲

Improvement of v1 → v2 can be
quantified by all three measures.

Eigenvalue

Decomposition

▲

The generated correlated groups of
neurons can be correctly identified.

▲

The data sets can be quantitatively
and visually distinguished.

▲

No salient correlation features can
be identified by visual inspection.

▲

Future work: Quantitative charac-
terization of the correlation struc-
ture

▲

Outlook: Development of a validation methods toolbox and integration into the validation
framework of the Human Brain Project [8]

Data Sets

Stochastic Data
HOC vs. PWC

Q: Can different correlation

structures be distinguished?
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▲

Generate stochastic activity
data for 100 neurons

▲

HOC: Higher order
correlations of order 8 and 5
via compound Poisson
processes + homogeneous
Poisson processes

▲

A compound Poisson
process [2][3] samples
synchronous events from an
amplitude distribution:
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▲

PWC: Pairwise correlations
via compound Poisson pro-
cesses of order 2 + homoge-
neous Poisson processes.
Constructed such that the
expected distribution of cor-
relation coefficients is identi-
cal to the HOC data.

Simulation Data
NEST vs. SpiNNaker v1
NEST vs. SpiNNaker v2

Q: Are the approaches

applicable to a real world

validation scenario?
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▲

Simulation: 1 mm3 cortical
microcircuit model
(80k neurons) [5]

▲

Analyze 100 inh. neurons
subsampled from Layer 4

▲

NEST: Simulated by a
conventional simulator
(NEST [4]) on an HPC

▲

SpiNNaker v1: Simulated
on a neuromorphic hardware
(SpiNNaker [6])

▲

SpiNNaker v2: Simulated
again on SpiNNaker after
an implementation bug is
fixed (see [1])
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Correlation Matrices: Color-coded correlation coefficient for every neuron pair.

Two Sample Testing

Stochastic Data Simulation Data
Pearson pairwise correlation coefficient: ρ(si, sj),
si: binary spike train (2 ms binning)

Kullback-Leibler Divergence
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Correlation Coefficient

DKL(P ||Q) =
∑

i

P (i) log2
P (i)

Q(i)
= H(P,Q)−H(P )

DKL = DKL(P ||Q) +DKL(Q||P )

▲

Entropy-based measure of the difference between two
distributions

▲

Interpretation: Information lost when substituting one
distribution for the other

▲

Distributions are similar.
DKL is relatively low.

▲

Divergence was reduced by
∼ 90% for v1 → v2.

Kolmogorov-Smirnov Distance
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Correlation Coefficient

DKS = sup |P̂ (x)− Q̂(x)|

▲

Distance measure: Maximal vertical difference between the
cumulative distributions

▲

Significant difference is assumed when p < 0.05.

▲

The small DKS can’t reject
the hypothesis that the
underlying distributions are
identical.

▲

The DKS was reduced by
∼ 70%. Hypothesis of
similarity is still rejected.

Mann-Whitney-U Test

Kernel Density Estimate
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Kernel Density Estimate

Ui = Ri −
ni(ni + 1)

2
, U = min(U1, U2)

▲

Ri: rank sum, ni: sample size

▲

U ∈ [0, n1n2

2 ] is a rank measure of sameness.

▲

Significant difference is assumed when p < 0.05.

▲

Rank sums are similar.
Hypothesis of similarity is
not rejected.

▲

Mismatch in the rank
density is only barely
detected in the rank sum
statistic.

Test Confidence

▲

The test results may vary notably for a different parameter
choice and due to the stochasticity of neurons.

Eigenvalue Decomposition

Stochastic Data Simulation Data
Performing Principle Component Analysis on the correlation
matrices C : (i, j) 7→ ρ(si, sj)

C · vi = λivi

Eigenvalue Distribution
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▲

The Marchenko-Pastur distribution describes the distribu-
tion of eigenvalues for an infinitely large correlation matrix.

▲

The Tracy-Widom bound accounts for the variance of the
bounds for a finitely sized random matrix [7].

▲

Significantly large eigenvalues indicate dominant correla-
tions in the network.

Eigenvectors
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▲

The vector loads of eigenvectors of significant eigenvalues
identify the corresponding groups of correlated neurons.

Ordered Correlation Matrices
HOC

PWC
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▲

With the information about
the eigenvalues and eigen-
vectors the neurons can be
reordered to reveal their cor-
relation structure.
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▲

Next step: Find measure for
the quantitative agreement of the correlation structure
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